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A B S T R A C T  

An inequality is proved, bounding the growth rates of the volumes of iterates of 
smooth submanifolds in terms of the topological entropy. For C~-smooth 
mappings this inequality implies the entropy conjecture, and, together with the 
opposite inequality, obtained by S. Newhouse, proves the coincidence of the 
growth rate of volumes and the topological entropy, as well as the upper 
semicontinuity of the entropy. 

I. Introduction 

Let N be a compact m-dimensional C~-smooth manifold with some fixed 

Riemannian metric w. Let [: N - +  N be a continuous mapping. We recall the 

definition of the topological entropy of f. 

Let d be the metric on N induced by w. For n = 0, 1 . . . . .  define a new metric 

dr., on N by 

ds.,,(x,y)= max d(f'(x),f+(y)). 
i ={LI.....n 

Denote  by Ms(n, e) the minimal number of e-balls in the d~,.-metric, covering N. 
Then the topological entropy h(f)  can be defined by 

1 
h(f) = !im lim - log., Ms(n, e). 

n ~  n 

(See [1], [3].) 

Let S+(f), /=0 ,1~  . . . .  m, denote the logarithm of the spectral radius of 

/ . :  H, (N,R)--~ H, (N,R), S(f) = max, S, (f). 

The entropy conjecture (in its first version) is that for f C~-smooth, S(f)<= 
h(f)..(See 19], [5], and a recent paper [4], where a unified version of this 
conjecture is posed.) 

Received July 3, 1986 

285 



286 Y. YOMDIN Isr. J. Math. 

We prove here the following result: 

THEOREM 1.1. For f C=-smooth, S(f)<_- h(f). 

In fact we prove that for C=-smooth f, the entropy h(f) bounds the growth 

rate of volumes, which, in turn, dominates any kind of homological growth. 

For k < o0 the "remainder terms" appear in the volume estimates. However, 

the resulting lower bounds for the entropy are nontriviai for any k > 1. 

To state the results precisely we need some additional invariants of the 

dynamics of f. We define them assuming that f is C-smooth ,  although in fact 

one needs much less. 

DEFINITION 1.2. For f:  N-->N, f E  C', 

R(f)  = !!m_~ 1 log max~N I[df"(x)ll' 

where the norm on the tangent bundle of N is given by w. 

> = [0, 1] t C R. We denote Let or: Qt --> N be a C k-mapping, k = 1, where Q~ 

the set of such ~ by X(k, l). v(tr) is defined as the /-dimensional volume of the 

image of t~ in N, counted with multiplicities: 

v(,~) = f~, ~(d~),  

where ~(dcr) is the volume form, induced on Q~ by a from the metric w on N. 

Let, for a natural n, 

v(f ,  ~, n )  = v( fn  o ~). 

DEFINITION 1.3. For k => 1, l _-< m, 

- - 1  
v,.k (f) = sup lim -- log v (f, ~r, n), 

*rEX(l ,k)  n ~  n 

Vk (f) = max V,.k (f), and 

v(f) = v~(f). 

Clearly, the invariants h(f),  S(f), R(f), V~.k (f) are independent of the choice 

of the metric w. h(f) and Si (f) are topologically invariant, R(f)  and vt, k (f) are 

C ~- and Ck-invariant, respectively. 

The following relations between the considered invariants are more or less 

immediate for f E Ct: 

(1) h(f) < mR(f), 
(2) v,.~ (f) <_- IR (f), 
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(3) St (f) <-- v,.~ (f) for any k = 1 . . . . .  ~. 
The last inequality follows from the fact that the norm of the homology class is 

bounded by integrals of some fixed differential forms on this class; these 

integrals, in turn, are bounded by the volume of the chain, representing this 

class. 

The following inequality was obtained by S. Newhouse [8]: 

F o r f @ C  '+~, e > O ,  h ( f ) < v ( f ) .  

In the present paper the opposite inequality is proved: 

THEOREM 1.4. For f E C k, k = 1 . . . .  , ~, I <= m, 

21 
vt.k (f) <--_ h( f )  +-~ R (f). 

REMARK. In [12] we prove this inequality with l /k  instead of 21/k. The 

examples below show this improved inequality is sharp. 

By (1) and (2) above this inequality can be nontrivial for any k > 2 .  

By (3) and by the Newhouse's inequality, we get 

COROLLARY 1.5. For f E C k, k = 1 . . . . .  0% 

(i) h(f)<= v(f)<-_ h ( f )+  (2 m / k )R ( f ) ,  
(ii) St(f)<= h( f )+(21 /k  )R(f) ,  
(iii) S(f)<-_ h ( f )+  (2m/k  )R(f) .  

For f a diffeomorphism we can replace 21 in (ii) by 2 m i n ( / , m -  l), and 

respectively in (iii). 

COROLLARY 1.6. For f E C ~, S( f )  <- v(f)  = h(f).  

Let us introduce an additional invariant which measures the growth of the 

volume of the part of tr, which remains in small balls under all the iterations. Let 

~ (n ,  e) denote the set of e-balls in the metric dr.,. 

Let cr E ~(I, k). For any S C_ Q~ define v(cr, S) as fsv(dtr) ,  and v(f, o', n, S) as 

v(f" o ~ ,  s ) .  

DEFINITION 1.7. For tr E E(k, l) and e > 0, let 

v"(f, tr, n , e ) =  sup v(f,o',n,o'-'(~)). 

v'~k(/, e) is defined as 

1 f l o g a ,  a=>l ,  
sup lira - log + v"(f, tr, n, e), where log + a = t • ,~.,k) . ~  n 0, a =< 1. 
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We define also by 

v,°.k(f) = !imom v~.k(f, e). 

In fact, Theorem 1.4 follows from the estimate of V°k(f): 

THEOREM 1.8. For f E C k, k = l . . . . .  oc 

0 , ~ , < 2 /  v,.kU) = -~ R (f). 

In particular, for f E C ~, 

v , °Af )  = o ,  l m.  

S. Newhouse proved (to appear) that the equalities vi°~(f) = 0, l = < m, imply the 

upper semicontinuity of the topological and metric entropy in the space of 

C~-smooth mappings f:  N---~ N. 

In this paper we prove the following result, which also implies the upper 

semicontinuity of h(f)  in the C ~ case: 

THEOREM 1.9. For f E C ~ and g ~ f in C k-topology, 

2m 
lim h ( g ) _  < - h(f)  +--/~- R(f) .  

REMARK 1. The bounds v~.~ (f) _-__ h if) + ( I /k)R (f), where 21 of Theorem 1.4 

is replaced by l, are sharp. The examples (essentially due to G. Margulis) are the 

following: for any ~ > 0 we can find a C k-function g on [0, 1], such that g has 

zeroes at x t < x 2 < ' "  and has local extrema at yi,x~ < yj < x~+l, with g(y~)= 
(1/i) k+~. 

Consider now the L-~-smooth mapping f :  S 2t ~ S 2~, which in local coordinates 

at some fixed point is given by the linear transformation 

l {  • 

A 

1 
A 

0\ 

1/ 

h > l ,  

and is extended to S 2' in such a way that h ( f ) =  O. 
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Consider now o-~E( t ,  k), Or: Q'--~ S 2', given in the above chart by 

Or(t,, . . . ,  t~) = (t, . . . .  , t,, g(tL) . . . . .  g(t,)). 

Then one can easily verify that v(g, or, n) and, in fact, v°(f, or, n, e) for any e > O, 
is of order At"/~k+e~. Hence 

v o f f )  l l v,.k (f)  >- >-- ~ log h = k + ~ g (f). 

Of course, one can transform this example to have or G E(l, oo), but f ~ C k. 

For 1 = 1, the proof of Theorem 1.4 gives, in fact, this sharp bound. 

REMARK 2. The proof of Theorem 1.4 allows one to bound the growth not 

only of the volume, but of various invariants, measuring complexity of sub- 

manifolds. In particular, for the so-called multidimensional variations (see [10], 

[6]), which seem to be useful in study of the entropy of mappings, it can be done 

by combining Theorem 2.1 below with the bounds of [11]. The detailed 

presentation of these results will appear separately. 

2. The following result, which concerns the structure of differentiable 

mappings and does not involve iterations, is, in fact, the main result of this 

paper: 

THEOREM 2.1. Let B and B '  denote the closed balls of radii 1 and 2, 

respectively, centered at 0 E R " .  Let f: B'---~ R"  be a Ck-mapping, 1 <= k < ~, 

such that 

max II d'f(x)ll <= M, s = 1 . . . . .  k. 
x E B '  

Let Or:Q'-->B' be a Ck-mapping, such that maxx~wlld~or(x)l]=<l, s =  
1 . . . . .  k. 

Then there exist not more than K = K ( k, m, l ,M ) = it(k,  m, l ) ( logM) v~k'"''~. M 2~lk 

mappings Oj : Q~ ~ Qt with the following properties: 

(1) q,j maps Qt diffeomorphically onto its image, j = 1 , . . . ,  K. 
K 

(2) I,.Jj=t Im(Oj)D S, where S = (f o Or )-~( B ) is the set of points x E Q', such that 

f o or(x) a.  
(3) Im(f o or o ~b,) C B',  j = 1 , . . . ,  K. 

(4) maxx~o, IIdS (f°  or o q', (x))ll---- 1, s - -  1 . . . .  , k, j = 1 , . . . ,  

Here the constants tt = it(k, m, l) and v = v(k, m, l) depend only on k, m and I. 
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We prove Theorem 2.1 in Sections 3 and 4 below. In this section we use it to 

prove the results, stated in the introduction. 

Let  N be as above. We assume in addition that some finite C%atlas 

f l = ( l l p ,  to.) is fixed, with ~ . - o p e n  domains, covering N and to.: I ) . - -*R"  

diffeomorphisms onto the images, such that for any k >_- 1 all the k-th derivatives 

of to.,o to~ are uniformly bounded, whenever defined. 

Let  a _-> 1 be a constant such that on any l l .  the metric 5p, induced by top, 

satisfies 

1 ~<__d<,~p, 
ct  

Now let f :  N-->N be a Ck-mapping, k :> 1. We define Ms(f), s = 1 . . . . .  k, as 

the maximum of 11 dSfll with respect to all the points in N and all the charts in ~ .  

We denote M,(f) by M. 

Now we define e0 > 0, depending on N, the metric w, the atlas f i  and f, to be 

the maximum of real numbers e, satisfying the following Conditions: 

(1) For any x E N the ball of the radius l0 Ma2e in metric d, centered at x, is 

contained in some chart ~p of ~1. 

(2) For  any s = 2 . . . . .  k, 

(3ae )'-t M, (f) <= M. 

Now let a E E ( k , l ) ,  or: Q~---~N. 

PROPOSITION 2.2. For any e < eo, 

v°ff, or, n, E)_-< c(~, e ) .  K", 

where c(a, e) is the constant, depending only on o" and e, and v°(f,o ", n, e) and 
K = K(k, m, l, M) are defined in Definition 1.7 and Theorem 2.1, respectively. 

PROOF. Let  a natural n be fixed and let ~ be some bali of radius e in the 

metric dr,. , centered at x0E N. Let  x, = f'(xo), i =  0, 1 . . . . .  n. For each i =  

0 . . . . .  n we fix some chart l)p,, containing x, together with the ball of the radius 

lOMa2e in metric d, centered at xi. 

Let  /}, denote the ae-ball  in metric 8p,, centered at x~. By definition of the 

constant a, /)~ contains the e-ball in metric d at x,. 

Hence the set ~ ={x E N ,  f ' ( x ) ~ / J  i, i = 0  . . . . .  n} contains the ball ~ ,  and 

therefore 

v(f ,~r,n,~)<--v(f ,a,n,~).  
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We note also that each /~  is mapped by f into ~p,, .  Indeed, by definition of 

constant M = M~(f), f (Bi )  is contained in the Mot%-ball in metric d at X~+l, 

which belongs entirely to ~p,÷,. The same is valid for the balls of doubled radius. 

Let B and B '  be, as above, the 1- and 2-balls, respectively, centered at 0 E R m. 

Define f~ : B'  --, R"  by 

/ 1 )  ° 
f ' =  -~e °J~°f°°J; ' l- l°(ae) '  i = l ' " " n '  

where (/3) denotes the linear mapping x ~ / 3 x  of R m. 

By the assumptions above, f~ are well-defined and satisfy the following 

conditions: 

(1) maxx~a,ll d~f~ (x)ll < (ae)S-'Ms (f)  < M, s = 1 , . . . ,  k. 
(2) Let S ~ = { x E R  m, F j ( x ) E B ,  j = 0 , 1  . . . . .  i}, where F j = f j  . . . . .  f,, j =  

1, ...., n, Fo = Id. Then 

LEMMA 2.3. Let 6":Qt--->B ' be a Ck-mapping, satisfying IId  ll_<-l, s = 

1 . . . . .  k. Then for i = 0  . . . . .  n, there exist not more than K' diffeomorphisms 

tk0: Q, ___>Qt, ] = 1 . . . . .  K' such that 
(1) lid'(F, o6o~,j)ll-<_ 1, s = l , . . . , k ,  

(2) Im(F, o~-o th,~)C B',  

(3) ~r-'(S,)C 07'=, Im(~,,). 

PROOF. By induction. For i = 0 fi" itself satisfies the conditions of the lemma. 

Assume that for p => 0 the lemma is proved. 

Denote by (rj the mappings 

Fp o d'o ~pj: Q' --> R m. 

Each (rj, and the mapping fp+~: B'---> R% satisfy the assumptions of Theorem 

2.1. Hence, by this theorem, for any or1 we can find not more than K mappings 

~bq : Q~ ---> Q~ such that II d~ (fp +~ ° ~J o ~bq)lt =< 1, s = 1 . . . .  , k, Im(fp+~ o o'~ o ~bq ) C B',, 

and the images of ffq cover (fp+~ o crj)-~(B) = (or o ~bp.i)-~(Sp+,). 

But then we have fp÷, o (r, o ~bq = Fp+, o o- o ~bp~ o tk~, and hence the mappings 

~p+,.~: Q'--->Qt, ~bp+t,~ = ~bp.i o~b~, where a = (j,q), satisfy the conditions of the 

lemma, and their number does not exceed uP • K = K ~+'. 

Lemma 2.3 is proved. 

To complete the proof of Proposition 2.2 it is enough to note that we can 

subdivide Q~ into C(cr, e) subcubes Q and reparametrize them linearly by 
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h~ : Qt ~ Qt c QJ in such a way that the mappings 

(~--~-) o ~o ~, o cr o h~ : Q~ --~ R "~ 

have all the derivatives up to the k-th, bounded by 1, and those of their images, 

which intersect B, are contained in B'. 

COROLLARY 2.4. For any e < e~j, 

21 
v~'~([, e) =< log/~ + v log log M + ~- log M. 

It follows immediately from the definition of v~k(f, e) and Proposi- PROOF. 

tion 2.2. 

Now let ~ > 0 be given. Define q(~) as the minimal integer, satisfying 

_1 q (log p, + v log log M) + log q v <_- ~. 
q 

Let g ( ~ ) > 0  be defined as e,, above, but for the mapping fqte~ instead of f. 

THEOREM 2.5. For any e < g(~), 

v,,.df, e )<_~+~.  1 logM,(fqt,)). q(~) 

In particular, 

21 v~'.k([, e ) <= ¢ +-~ iogM. 

PROOF. We apply Corollary 2.4 to the mapping 

[q, q = q (~): v~.k([ q, ~) = log/~ + v(log q + log log M) + ~ log M~(f q ). 

(Indeed, Ml(f q) = ML) 

But clearly v~.~(f q, e) _-> qv~,k(f, ~). Hence 

= +211 vt°d[,e)<= [log~ + v(logq +loglogM)l+2-- / l logM,.  q.<tf  # 
k q  

Theorem 2.5 is proved. 

Now we can prove Theorem 1.8. Indeed, taking e ~ 0, and hence ~ ~ 0 and 

q---~,  we immediately obtain from Theorem 2.5: 
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o o . < 2 1 1 i m l l o g M , ( f q ) = ~ R ( f ) .  v,,~(f) = 1)m v ,Af ,  e )  = -k . ~  't 

PROOF OF THEOREM 1.4. Let M t (n, e) denote, as above, the minimal number 

of e-bails in the dt.,-metric, covering N. Then for any tr ~E( l ,  k), and for any 

e > 0 ,  v(f ,a,n)<=Mr(n,e).v°(f ,o' ,n,e).  Hence for each e > 0 ,  v,.k(f)= < 
0 h(f)+ vt, k(f, e). Taking limit as e--->0, we get 

v,,~ ( f )  <= h ( f )  + o v,,k(f) <= h(f) + R(f).  

PROOF OF THEOREM 1.9. In fact, we prove a more precise statement. 

Let f: N---> N be a continuous mapping. Let W = W(f, k, M, M2 . . . .  , Mk, 8) 
denote the set of Ck-smooth g: N-->N, satisfying MI(g)<=M, M ~ ( g ) < M ,  
s = 2 . . . . .  k, and d(f, g) <= 6, where d(f, g) = maxx~Nd(f(x), g(x)). 

T H E O R E M  2 . 6 .  

lim sup h(g) < h(f)+~-~logM. 
~ ---.o g E w  

PROOF. (1) We choose e o > 0  so that the conditions on the choice of eo, 

described above, are satisfied for any g ~ W (with 6 = 1). 
(2) For a given ~ > 0, we fix a natural p such that A,¢ t,, _~ a < o~h~¢~+op ~v~f kU, 2e01 ~ ~ 

(3) We take 6 > 0 so small that for any g E W, any ½eo-ball in the dr, o-metric is 

contained in some s0-ball in the dg, p-metric. Hence for any g E W, 

M, (p, eo) <= Mf (p, ½eo) <= 2 ̀"<'~+~p 

(4) Now for any or E E(I, k), by the construction above, Q~ can be covered by 

at most 

c(cr, eo)X = c((r, e0)" M~ (p, E0)K ~ ~ C(~, eo)2~r~+~"K" 

mappings ~ :  Qt __> Q~, such that [I d~ (g" o tro ~J)[I = 1, s = 1 . . . . .  k. 
By induction, for n = p .  i, Q~ can be covered by at most c(o', eo)X ~ such 

mappings. Hence 

v(g, or, n) _<- c(~, eo)2~h~r>+¢J"K", and 

v,.k (g ) <= h (f) + ~ +log  K. 

Denoting l im~,sup~wvt ,  k (g) by ~3t, k, we obtain t3~,~ _-< h ( f ) + l o g  K. Finally, 

replacing f and g by f" and g~, and taking q-->0o, we get 

21 
5,,k -<_ h (f) + ~-. log M. 
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Since by S. Newhouse's inequality, lim~,supg~wh(g)<= f~t,k, Theorem 2.6 is 

proved. 

Note that in the case g E W, g---->f in C ~ we can in K replace M by M~(f), and 

hence in the final formula log M by R (f). This proves Theorem 1.9. 

REMARK 1. Of course, if f :  N---* N can be approximated in C°-topology by 

C~-smooth mappings with uniformly bounded derivatives, then, in fact, f E 
C k - I  . 

REMARK 2. One can easily given more "effective" versions of Theorem 2.6, 

similar to those of Theorem 2.5. The only information one needs to give 8 

explicitly, is the behavior of Mr(n, ~). 

3. Proof of Theorem 2.1 

First we estimate the derivatives of f o ~r. We have 

d ~ ( f o o - ) ( x )  = ~ a'f(~(x))o Pj(do ' (x) ) ,  s = 1 . . . .  , k, 
j= l  

where ~ (d~r) are the universal (depending only on m, l, s and j) polynomials in 

partial derivatives of ~. Hence, using the assumptions on the derivatives of f and 

~r, we obtain 

II d ~ ( f  o ,~ ) (x )ll ~ ~ II d ' f ( , , ( x  ))lt " II e, (do~(x))ll 
j=l 

s 

M ~ I1 t,. (a~(x))ll ~ Mc(m, I, s, j) ~ Mc~(m, 1, s) = Mcl. 
i=l 

From now on we proceed as follows: we subdivide Qt into smaller parts and 

then reparametrize each part by the same unit cube Q~. At every step, except 

one, the subdivisions and the corresponding reparametrizations will be linear, 

with the norm at most 1. 

(1) Let Y =2c,( [M] + 1)'/k([x/l]+ 1). We subdivide Qt into subcubes QI of 

size 1/% i = 1 , . . . , ~ ,  where K~ = y ~ = cz" M "k. 

Let ~ I : Q ~ Q t ~  he the a~ne  isomorphism of the form x = ~ l ( x ' )  = 

~, + ( 1 / v ) x ' .  

Then for any s = 1 . . . . .  k, and for g~ = f o cr o q~l we have 

II d ~g, II--< II d~ (fo or)II <- c, M < ½(1/x/l)SM l-~/t:. 
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In particular, II d~g, II =< M, s = 1 , . . . ,  k - 1, and 

IId kg, II <= ½(1/~/l) k. 

(2) We continue to work with one of the mappings g~, which we denote by g. 
Let p: R t ~ R" be the Taylor polynomial of g of degree k at the center of Qt, 

p = (p~,. . . ,  p , , )wi th  pj (xz . . . .  , x)-polynomials of degree k. 
By the Taylor formula: 

1 (_~_~ k k < ,  
(*) maxx~o Ilg(x)-p(x)ll<=-~. maxlld gll =a. 

(3) At this stage we use for the first time the fact that we need to cover only 
the part of Qt which is mapped by g into B. So let S = g - t ( B ) C  Q'. By (*) 

c_s' ={x e 0 '  IIIp(x)ll--< }. 

S' is a semialgebraic subset in Q~ (see e.g. [2]), defined by the only polynomial 

inequality of degree 2k: 

iIp(x)ll= 2 <25 
= r = ,  

(4) We use now the following proposition (entirely belonging to real 
semialgebraic geometry), whose proof for l = 1, 2 will be given in Section 4: 

PROPOSITIOn 3.1. Let A C Q ~ be a semialgebraic set in Q, defined by an 

> polynomial of degree d. inequality h = O, with h a 

Let C > 0 and a natural k be given. 

Then A can be subdivided into not more than K2 = K2(d, k, l, C) = c'(log C) c" 

closed semialgebraic subsets A~ with the following property: 

For any i = 1 . . . . .  K2, either 

(a) A, is contained in some subcube Qt of Q~ of size 1/C, or 

(b) There exists a semialgebraic and C k -smooth diffeomorphism q~ : Q* ~ A~ of 

the unit cube onto A, with 

IId q ,ll_-< 1, s = l , . . . , k .  

The constants c' and c" here depend only on l, d and k. 

(For definitions and basic properties of semialgebraic sets and mappings see 

e . g .  [21.) 
(5) We apply Proposition 3.1 to the semiaigebraic set S', defined above, with 

C = VIM, k as above and d = 2k. 
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Let S'~, i =  1 . . . .  , K2, be the parts of S', given by Proposition 3.1, K2 = 

c3(k,/)(log M) c'~k'l). 

Consider first S', which are contained in subcubes Q~ c Qt of size 1/2X/-IM. 
Using the affine reparametrizations ff~: Q~---~ Q~, we obtain 

II d'(go (o~)11 -- II d ~g II ---- 

In particular, IId(go~)ll_--  < I / 2 v l ,  and hence Im(goff~)C B'. Thus all the 

conditions of Theorem 2.1 are satisfied for the mappings ~bj = q~l o ff~ : Q~ ~ Q~. 

(6) Now consider some part S t  of S' of the second type: S t  is the image of 

Ck.diffeomorphism ~ :  Q~ ___~Qt with 

II d~l[-<-  1, s = 1 . . . . .  k. 

We have for any x @ Q~ and g' = g o ~ :  Q' --~ R ~ : 

(a) IIg'(x)ll<_-~. 
Indeed, g'(x)=g(y),  where y - - q ~ ( x ) E S ' .  Then IIp(y)ll-----~, and since 

tig_plt<¼, g(y)<__3. 

(b) II d~g'[I -< 2~7=, II d'g I1" II P, (d~)l l---  cs(k, I, m). M. 
The main advantage we have now is that in contrast to the initial situation, the 

norm of g' is now uniformly bounded by 3 on all the cube Q~. This allows us to use 

the estimates for the "intermediate" derivatives as follows: 

(7) Subdivide Q~ into subcubes Q~ of size 1/v', where y '= cs([M]+ 1) ~/k, 

~7 = 1 . . . . .  r3, with r3 = y,t = c6M.k. 
As above, after reparametrization by q~3: Q~__~Q~ we have for g " =  

g'o q~: Q' ---~ R~ : 

IIg"ll <~ = 2, 11 d kg,,ll -< 1 on all the Q~. 

(8) Now we prove the lemma, bounding intermediate derivatives through the 

function itself and its highest derivative. 

LEMMA 3.2. Let h: Q'---~R "~ be a Ck-mapping with IIh(x)tl_- < c,, lld~h(x)ll <- 
C2 [or any x ~ Q. 

Then IId~h(x)ll<-_c7(k,t,m)(C,+C~), x ~ Q ' ,  s = 1  . . . . .  k - 1 .  

PROOF. Let p be the Taylor polynomial of h of degree k at the center of QJ. 

Then 

(*) Ild'h(x)-d~p(x)ll<-_c;(k,l, rn)C:, x E Q ' ,  s = 0 , 1  . . . .  , k - 1 .  

In particular, U h - p II--< c~- C~, and hence 
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IIp(x)ll~c~,C2+C,, x~O'.  

Now by the Markov inequality (see [7]) for the polynomial p of degree k one 

has 

Il dSp(x)ll<-_ c~ max IIp(x)ll---- c'~(c~,C2 + C,), 
x E Q  1 

s = 1 . . . . .  k - 1, x ~ Qt. Using once more (*), we obtain 

II d ' h ( x ) l l  <= c~(c~C2 + C,)  + c~C2 <= c7(C, + C2), 

s = 1 , . . . ,  k - 1, x E Q~. Lemma 3.2 is proved. 

Applying this lemma to the mapping g", we get IId'g"(x)ll--< cs(k, l, m). 
(9) Subdividing Qt once more into the subcubes QJp of size 1/c8, p = 1 . . . .  , K4 = 

C~, and reparametrizing by q~: Q~---~Q~,, we get finally 

[Id~(g"o q~L)ll_-< 1, s =1  . . . . .  k. 

2 0 3 0 4 Thus we put 0, = ~otiog~ ~o~ ~oo, j = (i, 18,~/,p). By the construction, 

focr ~b~ = fo , 2 3 4 2 0  3 0  4 _ _  " 0 3 0  4 _ _  ~'! 4 

and hence its derivatives are bounded by 1, and its image is contained in B'. 

By the construction of ~bj, their images cover the set S = ( f o c r ) - t ( B ) .  The 

number of 6i does not exceed 

K ~ K t " / ( 2 "  K 3 "  K 4  

= c 2 M  'lk • c3(log M )  ~'" c 6 M  ~/k • c~ 

=/x(k,  l, m)(log M) ~t~''m~ • M z'~k. 

Theorem 2.1 is proved. 

4. Proof of Proposition 3.1 

We give here the proof only for l = 1 and 2. The proof in the general case will 

appear separately (see [12]). However, the two-dimensional case represents the 

main difficulties and ideas of the general situation. 

For l = 1 the proof is very simple. We have a subset A in [0, 1] defined by an 

inequality h => 0, with h a polynomial of degree d. If h --- 0, then we take [0, 1] as 

the only part At. Otherwise the equation h = 0 has at most d solutions in [0, 1]. 

Hence A consists of not more than (d + 2)/2 intervals, which we take as A~. 
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Note that for 1 = 1 we do not need the additional parameter C, K2(d, k, 1) = 
[(d + 2)/2], and the repararnetrizations q~ are linear. 

Let l = 2. We consider Q2 as the subset of R 2, defined by 0 < x =< 1, 0 =< y ~ 1. 

We can assume that h # 0. Consider the curve 

v ' = { ( x , y ) E Q  2, h ( x , y ) = 0 } ,  

and let v be the corresponding reduced curve. Let o'(v) be the set consisting of 

all the singular points of v, of the regular points of v, where the tangent line is 

parallel to Oy, and of all the intersection points of v with the boundary of Q2. 

Then o'(v) consists of the finite set o , ' (v)={(x,y~),  i =  1 . . . . .  cdd)} and, 

perhaps, of some vertical lines x = xj, j = c~(d)+ 1 . . . . .  c2(d), and two horizontal 

lines y = 0 a n d  y = l .  
Assume that x~ <= x2 <=" • <= x~(d) and consider two vertical lines x = x~ and 

x = x~+~, x~ < x~+t. We denote [x~, x~+ d x [0, 1] by Q'. 
By construction, v N Q' consists of at most c3(d) segments vj, which can be 

represented by y = yj (x), x~ =< x <= x~+l, with yj (x) continuous on [x ,  x~+~], 

analytic on (x,  x~÷~) and an algebraic function, satisfying 0 <= Yi (x) -<_ 1. 

We reparametrize Q' by the mapping 

4': Q 2 ~ Q , ,  ~(x, y ) =  (x, +x(x i+ l -X i ) , y ) .  

Below we constantly use the reparametrizations of this form, not specifying their 

concrete expressions. 

LEMMA 4.1. Let y = y(x)  be an algebraic [unction (defined by an equation of 

degree d)  on [13,1], which is continuous on [0,1], analytic on (0,1) and satisfies 

0 <= y(x)=< 1. Let C > 0 and a natural k be given. Then there exists a partition of 

[0, 1] into not more than K'(d, k, C) subintervals I~, such that either (1) [I~ I < l/C, 

or (2) for the affine reparametrization q~: [0, 1]---> I~, all the derivatives o[ y(tp~(x )) 

up to order k are bounded by 1. 

Here K'(d, k, C) = #(d, k)(log C) k. 

PROOF. (a) In the course of the proof we will several times subdivide and 

reparametrize our interval. If a t  some stage we obtain an interval of length 

<-<_ 1/C (in a new reparametrization), we do not subdivide it more, since its image 

in the original interval has at most the same length and hence satisfies condition 

(1). 
(b) Consider all the zeroes x~ in (0, 1) of those of d~y/dx ~, s = 1 . . . . .  k + 1, 

which do not vanish identically, i =  1 , . . . ,  ~(d, k). Subdividing [0, 1] by these 

points, we can assume that all the derivatives of y on [0,1], up to the k-th, do not 

change sign and are monotone. 
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Let, for example, y' =>0 and increase. Since 0 <  y =< 1, we have foy'dx <= 1. 
Consider the points zi = 1 - (½)J, j = 0, 1 . . . .  , q = [log C] + 1. Denote  /j the 

interval [zj_~, zj], j = 1 . . . .  , q, J = [zq, 1]. 

We have I JI = (½)q --< l/C, I/~ I = (~)s. Now y'//j <_- 2( Indeed, if y' > 2' at some 
point of/~, then, by monotonicity, y' > 2 ~ on [z ,  1], and since the length of [zs, 1] 
is (½)s, this contradicts the inequality f~ y'=< 1. 

Since ]/jl = (½y, after a reparametrization of /s by [0,1], we obtain a new 

function y with 0-<_ Y' < 1. 

On each new interval we apply the same construction to the second derivative 

of y and so on up to the k-th derivative. Since the property of a monotonicity of 

the derivatives persists under linear reparametrizations, the total number of the 

subintervals we obtained is, at most, 6(d, k)2k(log C) k. 

Lemma 4.1 is proved. 

Applying consequently this lemma to each of the algebraic functions yj (and 
noticing that in our reparametrizations the derivatives of other yi can only 

decrease), we reduce the situation to the following one: the set A C Q2 is given 

by the inequality yl(x)_- < y-<_ y2(x), where yl <--y: are two algebraic functions, 

analytic on [0, 1] with all the derivatives up to the k-th bounded by 1. 

Consider the diffeomorphism ~b: Q2___> A of Q2 onto A, given by 

4~(x, y) = (x, yt(x)+ y(y2(x)-  y~(x))). 

Clearly, all the partial derivatives of the components of ~b (up to the k-th) are 

bounded by 2. Hence subdividing Q2 into cs(k) smaller subcubes of size 

depending only on k, one gets q~,: Q2__~ A,, satisfying II d~q ~, Ii <= 1, s = 1 . . . .  , k. 
There remained some vertical strips of width <_- 1/C. We apply to these strips 

the same construction, but now with horizontal lines instead of vertical ones. 

Finitely we cover by mappings ~ all the set A, except some parts, contained in 

the subcubes of the size 1/C. The total number of subsets A~ does not exceed, by 
the construction, 

[c2(a)(K') c-~(a) • cs(k)] 2 = (c2(d)c(d, k).  c5(k))2(log C) 2kc3td, = c'(d, k,)(log C) c''a'k). 

The case I = 2 of Proposition 3.1 is proved. 
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